

WHAT FUTURE FOR CONTACTLESS CARD SECURITY ?

Alain Vazquez (alain.vazquez@louveciennes.sema.slb.com)

1/27 AV 2001/11/05

SchlumbergerSema

- **Major contactless features : summary**
- Contactless major constraints
- Major security issues
 - **Tamper resistant device**
 - Authentication
 - □ Integrity
 - **Confidentiality**
 - □ Security evaluation (CC, PP, …)
- What future for the contactless card security

Contactless IC overview

- Based on Smart Card IC with an RF interface (ISO 14443-x)
- Readers supply low impedance electromagnetic field at 13,56 MHz to :

□ Generate power supply for IC

- **Support Clock and data exchange using ASK modulation**
- Modulation rate : 100% (type A) or 10% (type B)
- Communication distance (0-10 cm typical)
- High speed serial communication (106 Kb/s 424 Kb/s)
- Anti-collision protocol
- Extended operating voltage range (typical 2.7 5.5 V)

Diagram (dual interface)

SchlumbergerSema

Targeted market

Major contactless features : summary

Contactless major constraints

- Major security issues
 - **Tamper resistant device**
 - Authentication
 - □ Integrity
 - Confidentiality
 - **Security evaluation (CC, PP, ...)**

What future for the contactless card security

Contactless constraints

- Ability to perform a "transaction" within a maximum of 150 ms time including :
 - Dialogue establishment with the reader (anticollision detection)
 - Internal computation (which may include cryptographic processing)
 - Data exchange (106 kb/s) in half duplex
- Low power consumption : typically 2 to 5 mW
 Internal CPU clock
 - □ Adapted design technology (submicron)

Security attacks

- Major contactless features : summary
- Contactless major constraints
- Major security issues
 - □ Tamper resistant device
 - Authentication
 - □ Integrity
 - **Confidentiality**
 - □ Security evaluation (CC, PP, …)
- What future for the contactless card security

Tamper resistant device

Tamper resistant device

- **Objectives : to prevent the outside from :**
 - Reading what must be kept secret
 - Tampering any stored data
- Contactless attacks
 - Most of them are common to "contact only" cards
 - Some of them may be re-enforced because of electromagnetic radiation (power, clock, data, ...)

Attacks (common with contact cards)

Physical

- Microprobing : access to chip with test or optical means
- Test mode recovery : recover initial test bit statement
- Reverse engineering : layout, data, address reconstruction
- Environmental monitoring ; temperature, light, ...
- Electrical
 - SPA/DPA : statistical attacks based on power analysis
 - Timing : execution time depending on input parameters and secret data involved

Logical

11/27 AV 2001/11/05

Software : taking advantage (through the Schambtaget Sema input) of the vulnerability of OS embedded

Attacks (re-enforced by RF interface)

Electrical

- EMA : Electromagnetic Analysis
 - Internal chip radiation
 - RF radiation (13 MHz range)
- Power drops and short cuts (nota)
 - Available power magnitude highly variable -> chip extended tolerance (2.7 -> 5.5 typical)
 - Clock supply glitches

(nota) intended to corrupt the normal transfer of data between CPU and memory

Hardware

- **Strong protection layers (test mode recovery)**
- Random logic design (reverse engineering recovery)
- □ Metal shielding (EMA, light, microprobing, …)
- □ Tamper sensors to warn the OS against attacks
- □ On chip filters (glitches, transient signals, ...)
- **True random generators**
- Unpredictable chip current power consumption

Software

- Memory address scrambling/memory management (firewall)
- Random software execution

Countermeasures efficiency

R:0 SM

European Smart Card Industry Association

- To fight against one attack, generally many countermeasures may be required but :
 - Additional hardware modules will increase power consumption
 - Additional software will slow the execution process
- One compromise must be found between efficiency and contactless requirements (execution time, power requirements)

Definition

- Confidence that the received data stream is actually the posted stream
- Mechanisms involved depend on the security level required
 - Basic protocol feature (Data associated with a CRC check within a frame) eg ISO 14443-4
 - □ Hash code (one way function)
 - SHA-1 (160 bit code)
 - MD5 (128 bit code)
 - Ripemd (160 bit code)

Authentication 1/5

Definition

- Mechanism that allows you to prove who you are actually
- Mechanisms (security level dependent)
 - ID presentation (identification)
 - Cryptographic techniques
 - **O** Symmetrical (DES encryption, MAC, ...)
 - O Asymmetrical (digital signature RSA, DSA, ECDSA, ...)

Remark : In most cases, authentication and integrity are performed at the same time

- User by the card (theft prevention)
 Not feasible in most cases
 - No Pin code typing
 - No biometric mechanisms (e.g. fingerprint)
- Nota : If required, authentication can be performed by out of band mechanisms (ex : railway ticket inspector)
- Card vs reader Typical requirements
 - Tranportation : card is authenticated by the reader
 - □ Finance : mutual authentication is required

Authentication 3/5

Reader

↓yes

Authentication

 ID
 ID reading

 Card ID posting
 ID reading

 a
 Random generation

 random
 Master key diversification

 C=TDES(Kc, a)
 Kc

 C
 C'=TDES(Kc, a)

BASIC AUTHENTICATION PROCESS USING A SYMMETRICAL ALGORITHM (CARD AUTHENTICATED BY READER)

18/27 AV 2001/11/05

Card

Authentication 4/5

Card

Reader

BASIC AUTHENTICATION (AND INTEGRITY) PROCESS USING 19/27 AV ASYMMETRICAL ALGORITHM (CARD AUTHENTICATED BY 2001/11/05 READER)

SchlumbergerSema

Computation performance (typical) **TDES encryption (8 bit CPU) TDES/128 bit key** Software : 80/100 ms Cryptoprocessing : 35 µs Digital signature RSA / 1024 bit key Software : not available at company Cryptoprocessing : 85 ms for signature generation

Confidentiality

- Objective : to insure privacy of transmitted data between card and reader
- **Techniques : Encryption**
 - Symmetrical key
 - **O** Difficult to manage and to share
 - **O** Requires a low "computation" power
 - Asymmetrical key
 - O Easy to manage
 - O Requires a high "computation" power and may require a cryptographic coprocessor

- Contact Only cards
 - Some IC are compliant with CC EAL4 augmented
 - Recently, an IC has been announced as being evaluated EAL5 augmented
- Contactless cards
 - Very few products have already been certified CC (ex : ASK IC with a SIb SAM software: EAL1+)
 - Some Protection Profiles have been certified (Assurance level targeted is level 4)

22/27 AV 2001/11/05

SchlumbergerSema

- Major contactless features : summary
- Contactless major constraints
- Major security issues
 - **Tamper resistant device**
 - Authentication
 - □ Integrity
 - **Confidentiality**
 - **Security evaluation (CC, PP, ...)**
- What future for the contactless card security

New High end products

- Mifare : Mifare proX : P8RF5016 (dual interface)
- ST Microelectronics : ST19XR34 (dual interface)
- Infineon : SLE 88CL320 (Preliminary sheet not yet available)

- Typical product features
 - Dual interface/ 13,56 MHz, 106 to 424 kb/s/ 10% or 100 % with ASK modulation
 - **8** bit CPU with 32 Kb EEPROM or more
 - On chip crypto processing (TDES, RSA, El Gamal, Elliptic curves, DSS, …)
 - Multiple sensors (voltage, clock, temperature, ...)
 - Memory management unit (or firewall)
 - □ True random number generation
 - □ Multi-application capabilities

- Schlumberger is involved in many comities/Initiatives
 - □ ISO 14443 (WG8), ISO 7816
 - E-europe (TB3, TB6), ETSI, EESSI, CEN, ...
- Full range of OS including a Java platform
- Pilot projects

ReSN

European Smart Card Industry Association

- Transport/purse cards (UK, Colombia, Spain, …)
- **City Cards (Brazil, Norway, UK)**
- Corporate/company cards (Club Net/ Japan, KPN (Netherlands, Tokyo University, ...)

- The future of contactless cards seems to be :
 - Dual interface to ease multiapplication/multi-services
 - High security features thanks to on-card cryptoproccessing
 - Opened platform OS (JavaCard, Multos...)
- To allow high security level evaluations, attacks related to electromagnetic radiation must be investigated in more details (power attacks, EMA, ...)