WHAT FUTURE FOR CONTACTLESS CARD SECURITY?

Alain Vazquez
(alain.vazquez@louveciennes.sema.slb.com)
Contents

- Major contactless features: summary

 - Contactless major constraints
 - Major security issues
 - Tamper resistant device
 - Authentication
 - Integrity
 - Confidentiality
 - Security evaluation (CC, PP, ...)

- What future for the contactless card security
Contactless IC overview

- Based on Smart Card IC with an RF interface (ISO 14443-x)
- Readers supply low impedance electromagnetic field at 13.56 MHz to:
 - Generate power supply for IC
 - Support Clock and data exchange using ASK modulation
- Modulation rate: 100% (type A) or 10% (type B)
- Communication distance (0-10 cm typical)
- High speed serial communication (106 Kb/s – 424 Kb/s)
- Anti-collision protocol
- Extended operating voltage range (typical 2.7 – 5.5 V)
Targeted market

- Public Transport: Bus, Subway, Train
- Car Parking
- City Services: Library, Swimming Pool
- Payphones
- Retail
- Schools

Easyflex City

5/27 AV
2001/11/05
Major contactless features: summary

Contactless major constraints

Major security issues
- Tamper resistant device
- Authentication
- Integrity
- Confidentiality
- Security evaluation (CC, PP, ...)

What future for the contactless card security
Contactless constraints

- Ability to perform a "transaction" within a maximum of 150 ms time including:
 - Dialogue establishment with the reader (anti-collision detection)
 - Internal computation (which may include cryptographic processing)
 - Data exchange (106 kb/s) in half duplex

- Low power consumption: typically 2 to 5 mW
 - Internal CPU clock
 - Adapted design technology (submicron)
Security attacks

- Man in the middle
- Eavesdropping
- Telepickpocketing
- Tampering

Host
Reader

8/27 AV
2001/11/05
Major contactless features: summary

Contactless major constraints

Major security issues
- Tamper resistant device
- Authentication
- Integrity
- Confidentiality
- Security evaluation (CC, PP, ...)

What future for the contactless card security
Tamper resistant device

- Objectives: to prevent the outside from:
 - Reading what must be kept secret
 - Tampering any stored data

- Contactless attacks
 - Most of them are common to "contact only" cards
 - Some of them may be re-enforced because of electromagnetic radiation (power, clock, data, ...)

Tamper resistant device
Attacks (common with contact cards)

- **Physical**
 - Microprobing: access to chip with test or optical means
 - Test mode recovery: recover initial test bit statement
 - Reverse engineering: layout, data, address reconstruction
 - Environmental monitoring; temperature, light, ...

- **Electrical**
 - SPA/DPA: statistical attacks based on power analysis
 - Timing: execution time depending on input parameters and secret data involved

- **Logical**
 - Software: taking advantage (through the standard input) of the vulnerability of OS embedded
Attacks (re-enforced by RF interface)

- Electrical
 - EMA : Electromagnetic Analysis
 - Internal chip radiation
 - RF radiation (13 MHz range)
 - Power drops and short cuts (nota)
 - Available power magnitude highly variable -> chip extended tolerance (2.7 -> 5.5 typical)
 - Clock supply glitches

(nota) intended to corrupt the normal transfer of data between CPU and memory
Any countermeasures ? 1/2

■ Hardware
 □ Strong protection layers (test mode recovery)
 □ Random logic design (reverse engineering recovery)
 □ Metal shielding (EMA, light, microprobing, …)
 □ Tamper sensors to warn the OS against attacks
 □ On chip filters (glitches, transient signals, …)
 □ True random generators
 □ Unpredictable chip current power consumption

■ Software
 □ Memory address scrambling/memory management (firewall)
 □ Random software execution
Countermeasures efficiency

- To fight against one attack, generally many countermeasures may be required but:
 - Additional hardware modules will increase power consumption
 - Additional software will slow the execution process

- One compromise must be found between efficiency and contactless requirements (execution time, power requirements)
Definition

- Confidence that the received data stream is actually the posted stream

Mechanisms involved depend on the security level required

- Basic protocol feature (Data associated with a CRC check within a frame) eg ISO 14443-4
- Hash code (one way function)
 - SHA-1 (160 bit code)
 - MD5 (128 bit code)
 - Ripemd (160 bit code)
Definition

- Mechanism that allows you to prove who you are actually

Mechanisms (security level dependent)

- ID presentation (identification)
- Cryptographic techniques
 - Symmetrical (DES encryption, MAC, ...)
 - Asymmetrical (digital signature RSA, DSA, ECDSA, ...)

Remark: In most cases, authentication and integrity are performed at the same time
User by the card (theft prevention)
- Not feasible in most cases
 - No Pin code typing
 - No biometric mechanisms (e.g. fingerprint)

Nota: If required, authentication can be performed by out of band mechanisms (ex: railway ticket inspector)

Card vs reader Typical requirements
- Transportation: card is authenticated by the reader
- Finance: mutual authentication is required
BASIC AUTHENTICATION PROCESS USING A SYMMETRICAL ALGORITHM (CARD AUTHENTICATED BY READER)
BASIC AUTHENTICATION (AND INTEGRITY) PROCESS USING ASYMMETRICAL ALGORITHM (CARD AUTHENTICATED BY READER)
Computation performance (typical)

- TDES encryption (8 bit CPU) TDES/128 bit key
 - Software: 80/100 ms
 - Cryptoprocessing: 35 μs

- Digital signature RSA / 1024 bit key
 - Software: not available at company
 - Cryptoprocessing: 85 ms for signature generation
Confidentiality

- Objective: to insure privacy of transmitted data between card and reader
- Techniques: Encryption
 - Symmetrical key
 - Difficult to manage and to share
 - Requires a low "computation" power
 - Asymmetrical key
 - Easy to manage
 - Requires a high "computation" power and may require a cryptographic coprocessor
Security evaluation

- "Contact Only" cards
 - Some IC are compliant with CC EAL4 augmented
 - Recently, an IC has been announced as being evaluated EAL5 augmented

- Contactless cards
 - Very few products have already been certified CC (ex: ASK IC with a SImb SAM software: EAL1+)
 - Some Protection Profiles have been certified (Assurance level targeted is level 4)
Contents

- Major contactless features: summary
- Contactless major constraints
- Major security issues
 - Tamper resistant device
 - Authentication
 - Integrity
 - Confidentiality
 - Security evaluation (CC, PP, ...)

What future for the contactless card security
New High end products

- Mifare: Mifare proX: P8RF5016 (dual interface)
- ST Microelectronics: ST19XR34 (dual interface)
- Infineon: SLE 88CL320 (Preliminary sheet not yet available)
Typical product features

- Dual interface/ 13.56 MHz, 106 to 424 kb/s/ 10% or 100 % with ASK modulation
- 8 bit CPU with 32 Kb EEPROM or more
- On chip crypto processing (TDES, RSA, El Gamal, Elliptic curves, DSS, …)
- Multiple sensors (voltage, clock, temperature, …)
- Memory management unit (or firewall)
- True random number generation
- Multi-application capabilities
Company On going activities

- Schlumberger is involved in many comities/Initiatives
 - ISO 14443 (WG8), ISO 7816
 - E-europe (TB3, TB6), ETSI, EESSI, CEN, …
- Full range of OS including a Java platform
- Pilot projects
 - Transport/purse cards (UK, Colombia, Spain, …)
 - City Cards (Brazil, Norway, UK)
 - Corporate/company cards (Club Net/ Japan, KPN (Netherlands, Tokyo University, …)
The future of contactless cards seems to be:

- Dual interface to ease multi-application/multi-services
- High security features thanks to on-card cryptoprocessing
- Opened platform OS (JavaCard, Multos...)

To allow high security level evaluations, attacks related to electromagnetic radiation must be investigated in more details (power attacks, EMA, ...).