Multivariate Cryptography on Smart Cards

Mehdi-Laurent Akkar Jacques Patarin

ml.akkar@free.fr

j.patarin@frlv.bull.fr

CP8,

68 route de Versailles78431 Louveciennes, FRANCE

Public Key Cryptography

- Arithmetic Schemes
 Typical operation
- *Elliptic Curves* Typical operation
- *Multivariate schemes* Typical operations
- Others (Graphs, Lattices ...) often not efficient

a.b mod n a,b,n 512 to 2048 bits

a + b on the curve a,b 100 to 220 bits

a+b mod n / a.b mod n a,b,n 1 to 16 bits

speed, size of keys ...

Multivariate Cryptography (1)

- Multivariate Polynomials Cryptography
 - Degre 1: Error correcting codes schemes (Mc Eliece, Niedereiter)
 - Degre 2: HFEV⁻ (ie. Quartz ...), C^{*--} (ie. Flash, Sflash)
 - Degre 3: Dragons of degre 3
 - Degre 4: $2R^{-}$
- Properties:
 - No proofs of security (indirect results)
 - Very efficien for authentificatin, signature and encryption.

Multivariate Cryptography (2)

- Multivariate Combinatorial Cryptography:
 - Non NP-Hard: IP
 - NP Hard: PKP, SD, PPP, MinRank
- Properties:
 - Good proof of security
 - Very efficient for authentification
 - Not efficient for signatures
 - No encryption

IP (Isomophisms of Polynomials)

• Secret of Alice (A) :

an isomorphism s between 2 sets of equations (X) and (Y) *Public Key :*(X) and (Y)

Alice Randomly generates (Z) isomorph to (X) by t
 Bob Send to Alice 0 or 1
 Alice 0 Send t to bob
 1 Send t $o s^{-1}$ to Bob
 Bob 0 Check that (X) is t-isomorph to (Z)
 1 Check that (Y) is (s⁻¹ o t)-isomorph to (Z)

HFE = Hidden Fields Equation

- x : cleartext (or signature), x∈ F_qⁿ, x= (x₁, ..., x_n)
 s : secret affine bijection
 b = f(a) = with a,b∈ F_qⁿ, degre(b) < d (< 1000
 t : secret affine bijection
 y : cyphertext (or message to sign), y ∈ F_qⁿ, y= (y₁, ..., y_n)
- The public key is the composition of the 3 operations.

$C^{*-} = C^*$ scheme with missing equations & only one branch

- $x : \text{cleartext (or signature), } x \in F_q^n, x = (x_1, ..., x_n)$ • s : secret affine bijectiona $b = f(a) = \text{with a } F_q^n,$
 - t : secret affine *non bijective* fonction
 - y : message to sign(no encryption) , $y \in F_q^{\alpha}$, $y=(y_1, ..., y_{\alpha})$ where $\alpha < n$ and $q^{n-\alpha} > 2^{64}$
- The public key is the composition of the 3 operations.

Example: $n=8/K=F_2$

y_0	=	$F^{(0)}(x_0,, x_7)$	=	$1 + x_0 + x_3 + x_0 x_2 + x_1 x_2 + x_0 x_3 + x_1 x_3 + x_2 x_3 + x_0 x_4 + x_1 x_4 \\$
				$+x_3x_4 + x_1x_5 + x_4x_5 + x_2x_6 + x_5x_6 + x_0x_7 + x_2x_7 + x_4x_7 + x_6x_7$
y_1	_	$F^{(1)}(x_0,,x_7)$	=	$1 + x_0 + x_2 + x_3 + x_5 + x_6 + x_0x_1 + x_0x_2 + x_1x_2 + x_1x_3 + x_1x_4$
				$+x_2x_4 + x_3x_4 + x_0x_5 + x_1x_5 + x_2x_5 + x_0x_6 + x_4x_7 + x_6x_7$
y_2	=	$F^{(2)}(x_0,, x_7)$	=	$x_2 + x_3 + x_5 + x_6 + x_2 x_3 + x_2 x_4 + x_0 x_5 + x_1 x_5 + x_0 x_6 + x_1 x_6$
				$+x_2x_6+x_3x_6+x_4x_6+x_2x_7+x_4x_7+x_6x_7$
y_3	=	$F^{(3)}(x_0,, x_7)$	=	$1 + x_3 + x_4 + x_5 + x_6 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_4 + x_2x_4 + x_2x_5$
				$+x_1x_6+x_2x_6+x_3x_6+x_4x_6+x_5x_6+x_0x_7+x_1x_7+x_2x_7+x_3x_7$
J				$+x_4x_7 + x_5x_7$
y_4	=	$F^{(4)}(x_0,, x_7)$	=	$1 + x_5 + x_0x_1 + x_1x_2 + x_1x_3 + x_0x_4 + x_2x_4 + x_3x_4 + x_0x_5 + x_3x_5$
				$+x_3x_6+x_5x_6+x_2x_7+x_4x_7+x_5x_7$
y_5	—	$F^{(5)}(x_0,, x_7)$	—	$x_2 + x_3 + x_5 + x_7 + x_0 x_1 + x_0 x_2 + x_0 x_3 + x_1 x_3 + x_0 x_4 + x_2 x_4$
				$+x_3x_4 + x_1x_5 + x_2x_5 + x_0x_6 + x_4x_6 + x_5x_6 + x_1x_7 + x_2x_7 + x_3x_7$
				$+x_4x_7 + x_5x_7 + x_6x_7$
y_6	=	$F^{(6)}(x_0,,x_7)$	=	$x_0 + x_0x_1 + x_0x_2 + x_0x_3 + x_1x_3 + x_0x_5 + x_2x_5 + x_4x_5 + x_0x_6$
				$+x_3x_6+x_1x_7+x_6x_7$
y_7	—	$F^{(7)}(x_0,, x_7)$	=	$1 + x_0 + x_4 + x_7 + x_0x_1 + x_0x_2 + x_1x_2 + x_2x_3 + x_0x_4 + x_0x_5 + x_1x_5$
l				$+x_2x_5 + x_4x_5 + x_0x_6 + x_1x_6 + x_2x_6 + x_4x_6 + x_0x_7 + x_3x_7 + x_4x_7$

Efficiency (signature) (1)

• RSA 1024

- Best known attack
- RAM in secret key computations
- RAM in public key computations
- Length of the public key
- Length of the secret key
- ROM Code
- Secret key computation (CRT)
- Public key computation (e=3)
- Length of the Signature

10¹¹ Mips year (2⁸¹ op.)
264 bytes
400 bytes
128+1 bytes
128 bytes
500 bytes
1600 basic operations
8 basic operations
128 bytes

Efficiency (signature) (2)

• Quartz (HFEv- variant)

- Best known attack
- RAM in secret key computations
- RAM in public key computations
- Length of the public key
- Length of the scret key
- ROM Code
- Secret key computation (CRT)
- Public key computation (e=3)
- Length of the Signature

10¹³ Mips year (2¹⁰⁰ op) 500 bytes 40 bytes 71000 bytes 3000 bytes 500 bytes 16000 basic operations 0.5 basic operations 16 bytes

Efficiency (signature) (3)

• Flash (C*-- variant)

- Best known attack
- RAM in secret key computations
- RAM in public key computations
- Length of the public key
- Length of the scret key
- ROM Code
- Secret key computation (CRT)
- Public key computation (e=3)
- Length of the Signature

10¹³ Mips year (2¹⁰⁰ op)
100 bytes
30 bytes
18000 bytes
2750 bytes
500 bytes
10 basic operations
1 basic operations
37 bytes