# Design of High Speed Long Calculation Units for Public-Key Cryptography 

Jean-Pierre Seifert<br>Infineon Technologies Corporation Security \& Chip Card ICs Technical Innovation<br>D-81669 Munich<br>Germany

## Motivation - Why to think about new long integer arithmetic units

 for smart card ICs?$\Rightarrow$ First generation long integer units were designed to support RSA
$\rightarrow$ Longer RSA parameters desired
$\rightarrow$ RSA is loosing its dominant role
$\rightarrow$ Increasing interest in public key schemes based on elliptic curves
$\rightarrow$ New attacks unknown when the current units were designed

$\rightarrow$ Support of RSA up to 2048 Bits
$\rightarrow$ Support of elliptic curves over finite fields up to 256 Bits
$\rightarrow$ Immunity against recent attacks
$\rightarrow$ Flexibility and scalability of the design

What are the arithmetic requirements due to RSA?

## RSA

Crucial cryptographic operation:
$\mathrm{a}, \mathrm{b}, \mathrm{N} \rightarrow \mathrm{a}^{\mathrm{b}} \bmod \mathrm{N}$


Reduction to more elementary operations
modular squarings, modular multiplications

$$
\begin{aligned}
& c \rightarrow c^{2} \bmod N \\
& c, a \rightarrow c \times a \bmod N
\end{aligned}
$$

## Registers:

small number of very long registers (4 x 2048 Bits)

## What are the arithmetic requirements due to elliptic curves?

Elliptic curve $E: y^{2}=x^{3}+a x+b$ over $G F(p)$ or $E: y^{2}=x^{3}+a x+b$ over $G F\left(2^{k}\right)$
Crucial cryptographic operation:
$k, P \rightarrow k \times P, \quad$ where $k$ is a secret integer, $P=\left(x_{P}, y_{P}\right)$ is a point on $E$.

## Reduction to elementary operations on elliptic curve

point doublings / additions of different points

$$
Q \rightarrow 2 \times Q \quad Q, P \rightarrow Q+P
$$

## Reduction to elementary modular arithmetic

a lot of modular additions, modular subtractions, modular multiplications, and at least one modular inversion

## Registers:

large number of rather short registers (8 x 256 Bits)
random access to operands necessary

## What is "modular arithmetic" and how to do it?

Given: a positive integer N , the modulus, integers $a$ and $b$ with $0 \leq a, b<N$

Modular addition: $\quad$ Find the integer c with $0 \leq \mathrm{c}<\mathrm{N}$ such that $\mathrm{c} \equiv \mathrm{a}+\mathrm{b} \bmod \mathrm{N}$
Modular multiplication: Find the integer $c$ with $0 \leq c<N$ such that $c \equiv a \times b \bmod N$

Standard techniques for modular multiplication:

- Multiply $a$ and $b$ and divide the result by $N$.
- Interleave steps necessary for multiplication with steps for modular reduction

The methods for modular arithmetic depend strongly on the chosen representation of integers:

```
Basis \mathbf{B}={\mp@subsup{B}{m-1}{},\ldots,\mp@subsup{B}{0}{}}
integer a vector ( }\mp@subsup{a}{m-1}{},\ldots,\mp@subsup{a}{0}{})\mathrm{ of coordinates }\mp@subsup{a}{j}{}\mathrm{ with respect to }\mp@subsup{B}{j}{
```

Some design approaches
$\Rightarrow$ The chinese remainder approach
$\Rightarrow$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ consists of coprime integers
$\Rightarrow$ additions, multiplications $\bmod B_{m-1}, \ldots, \bmod B_{0}$ in parallel
$\Rightarrow$ modular reduction difficult
$\rightarrow$ The full-parallel-multiplier-approach
$\rightarrow$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ consists of powers of a fixed radix $B$
$\Rightarrow$ widely a software approach
$\Rightarrow$ The serial-parallel-multiplier approach
$\Rightarrow$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ consists of powers of a fixed radix $B$

## Algorithmic description of interleaved modular multiplication

Given: Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{i}=B^{j}$, for some radix $B=2^{k}$ and $a=\left(a_{m-1}, \ldots, a_{0}\right), b=\left(b_{m-1}, \ldots, b_{0}\right), c=\left(c_{m-1}, \ldots, c_{0}\right)$
Input: Operands $a, b$ of length $m$, radix $B$, modulus $N$
Output: $c=a \cdot b \bmod N$

1) $\quad c \leftarrow 0$;
2) for $\mathrm{i} \leftarrow \mathrm{m}-1$ downto 0 do
3) $\quad c \leftarrow c \cdot B+a_{i} \cdot b$
4) 

$c \leftarrow c \bmod N$

Basic design options for a modular multiplication device

The full-parallel-multiplier approach:
large radix $B=2^{k} \quad$ (i.e. $k=16$ )
core component: k-bit parallel-multiplier

- calculates products $\mathrm{a}_{\mathrm{i}} \cdot \mathrm{b}$ in blocks of length k
- reduced number of loop iterations

The serial-parallel-multiplier approach: small radix $B=2^{k} \quad$ (i.e. $k=1, . ., 3$ )
core component: fast parallel adder

- small number of products $a_{i} \cdot b$
- addition of intermediate results in one step


## The serial-parallel-multiplier approach

## Method

$\rightarrow$ multiplication is broken down to shifts and additions
$\rightarrow$ modular reduction interleaved with steps for multiplication

## Basic constituents

$\rightarrow$ fast parallel adder
$\rightarrow$ algorithm for modular reduction

## The problem of fast parallel addition

$\quad$ Given: $\quad$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B^{i}$, for some fixed radix $B$, set of digits $\mathbf{Z}$. Integers $a=\left(a_{m-1}, \ldots, a_{0}\right)$ and $b=\left(b_{m-1}, \ldots, b_{0}\right), a_{i}, b_{i} \in Z$.

Problem: Design a device that determines $s=\left(s_{m}, \ldots, s_{0}\right)$, where $s=a+b$ Area: as small as possible Time: as short as possible Scalability: as good as possible

Non-redundant set $\boldsymbol{Z}$ of digits:
$Z=\{0,1, \ldots, B-1\}$
representation of integer is unique
$\Rightarrow$ Carry-ripple-adder
$\Rightarrow$ Carry-look-ahead-adder
$\rightarrow$ Carry-completition-adder

Redundant set $\boldsymbol{Z}$ of digits:
\#(Z) >B
representation of integer is not unique
$\Rightarrow$ Carry-save-adder
$\rightarrow$ Delayed-carry-adder
$\Rightarrow$ RSD-adders

Comparision of parallel adders (i)

Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B^{j}$, for radix $B=2$, set of digits: $\mathbf{Z}=\{0,1\}$
$\Rightarrow$ Carry-ripple-adder
Area: $\quad \mathrm{O}(\mathrm{m}) \quad \mathrm{m}$ full-adder-cells
Time:
O(m)
Scalability:
good
$\Rightarrow$ Carry-look-ahead-adder
Area: $\quad \mathrm{O}(\mathrm{m} \cdot \log \mathrm{m})$
Time: $\quad O(\log m)$
Scalability: difficult
$\Rightarrow$ Carry-completition-adder
Area: $\quad \mathrm{O}(\mathrm{m} \cdot \log \mathrm{m})$
Time: $\quad \mathrm{O}(\log m)$
Scalability: difficult

## The carry-ripple-adder

Given: $\quad$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B_{j}$, for the radix $B=2$, set of digits $\mathbf{Z}=\{0,1\}$

Integers $a=\left(a_{m-1}, \ldots, a_{0}\right)$ and $b=\left(b_{m-1}, \ldots, b_{0}\right), a_{i}, b_{i} \in Z$. $\mathrm{s}=\left(\mathrm{s}_{\mathrm{m}}, \ldots, \mathrm{s}_{0}\right)$, where $\mathrm{s}=\mathrm{a}+\mathrm{b}$

Addition rule: $\mathrm{s}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}}$, where $\mathrm{c}_{0}=0$

$$
\begin{aligned}
& c_{i+1}=a_{i} \times b_{i} \vee a_{i} \times c_{i} \vee b_{i} \times c_{i} \\
& s_{m}=c_{m}
\end{aligned}
$$

Properties:

| Area: | $O(m)$, |
| :--- | :--- |
| Time: | $O(m)$ |
| Scalability: | good |

Evaluation: completely inadequate for cryptographic applications

Comparision of parallel adders (II)

Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B^{j}$, for radix $B=2$, set of digits: $\mathbf{Z}=\{0,1\}$
$\Rightarrow$ Carry-Save-adder
Area: $\quad O(m) \quad m$ full-adder-cells
Time: $\quad \mathrm{O}(1)$
Scalability: good
$\Rightarrow$ Delayed-carry-adder
Area: $\quad \mathrm{O}(\mathrm{m}) \quad \mathrm{m}$ full-adder-cells +m half-adder-cells
Time:
$\mathrm{O}(1)$
Scalability: good
$\Rightarrow$ RSD-adders
Area: $\quad \mathrm{O}(\mathrm{m})$
Time: $\quad \mathrm{O}(1)$
Scalability: good

The carry-save-adder or (3,2)-counter or 3-operand-adder

Given: Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B^{j}$, for radix $B=2$.
set of digits Z first operand:
$\mathbf{Z}=\{0,1\}$
second operand
pair of binary digits from $\mathbf{Z}$ sum: pair of binary digits from $\mathbf{Z}$

Input: $\quad \mathrm{a}=\left(\mathrm{a}_{\mathrm{m}-1}, \ldots, \mathrm{a}_{0}\right)$,

$$
\mathrm{b}=\left(\mathrm{b}_{\mathrm{m}-1}, \ldots, \mathrm{~b}_{0}\right), \mathrm{c}=\left(\mathrm{c}_{\mathrm{m}-1}, \ldots, \mathrm{c}_{0}\right)
$$

Output: $\mathrm{s}=\left(\mathrm{s}_{\mathrm{m}-1}, \ldots, \mathrm{~s}_{0}\right)$ and $\mathrm{c}^{\prime}=\left(\mathrm{c}_{\mathrm{m}-1}, \ldots, \mathrm{c}_{0}{ }_{0}\right)$ such that

$$
s+c^{\prime}=a+b+c
$$

Addition rules.

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \oplus \mathrm{~b}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}} \\
& \mathrm{c}_{\mathrm{i}+1}^{i_{1}}=\mathrm{a}_{\mathrm{i}} \times \mathrm{b}_{\mathrm{i}} \vee \mathrm{a}_{\mathrm{i}} \times \mathrm{c}_{\mathrm{i}} \vee \mathrm{~b}_{\mathrm{i}} \times \mathrm{c}_{\mathrm{i}}
\end{aligned}
$$

Properties: Area: $O(m)$, scales easily Time: $O(1)$

The carry-save-adder is a straightforward derivate of the carry-ripple-adder.

The panic-adder or a fast-average-case adder
Idea: On average, the longest carry chain when adding two m-bit numbers is of length

$$
\log _{2} \mathrm{~m} .
$$

## Thus:

— Divide $m$ bits into blocks of length $b$, i.e., $m / b$ blocks.

- Choose b large enough such that there is on average no carry between consecutive blocks.
- Realize the blocks of length b as carry-look-ahead-adders.
— A block gets into panic, if an incoming carry would travel through it.

Clue: No time needed for carry propagation on average, but only some little extra time in the unlikely case that a block gets into panic.

## Probability that a block gets into panic

$$
\begin{array}{ll}
\text { probability for panic in block of length } \mathrm{b} & =(1 / 2)^{\mathrm{b}} \\
\text { probability for no panic in I blocks of length } \mathrm{b} & =\left(1-(1 / 2)^{\mathrm{b}}\right)^{\text {l }} \\
\text { probability for panic in at least } 1 \text { out of I blocks } & =1-\left(1-(1 / 2)^{\mathrm{b}}\right)^{1}
\end{array}
$$

Given: $\quad$ Basis $\mathbf{B}=\left\{B_{m-1}, \ldots, B_{0}\right\}$ with $B_{j}=B^{j}$, for the radix $B=2$, set of digits $\mathbf{Z}=\{0,1\}$

Integers $\mathrm{a}=\left(\mathrm{a}_{\mathrm{m}-1}, \ldots, \mathrm{a}_{0}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{\mathrm{m}-1}, \ldots, \mathrm{~b}_{0}\right), \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{Z}$ $\mathrm{s}=\left(\mathrm{s}_{\mathrm{m}}, \ldots, \mathrm{s}_{0}\right)$, where $\mathrm{s}=\mathrm{a}+\mathrm{b}$

Addition rule:
as described before
Properties:

| Area: | $\mathrm{O}(\mathrm{m})$, |
| :--- | :--- |
| Time: | $\mathrm{O}(1)$ |
| Scalability: | very good |

Evaluation: Extraordinarily suited for cryptographic applications as operands are long, thus resulting in a good average time.

## Methods for interleaved modular reduction

Problem: $\quad$ Given the modulus N and integers a and b with $0 \leq a, b<N$. Find $a+b \bmod N$.

Methods to solve the problem:
$\Rightarrow$ Comparision of sizes and subtraction
$c \leftarrow a+b$
if $\mathrm{c} \geq \mathrm{N}$ then $\mathrm{c} \leftarrow \mathrm{c}-\mathrm{N}$
Problem: The comparision" is $\mathrm{c} \geq \mathrm{N}$ ? " can be difficult
$\Rightarrow$ Omura reduction
For a fixed power $2^{s}>\mathrm{N}$ the integer $2^{\mathrm{s}}-\mathrm{N}$ is stored
This replaces comparision of sizes by overflow detection
$\Rightarrow \quad$ Montgomery reduction
avoids completely operations based on estimates of sizes
Replaces operations with N by operations with the radix B
Drawback: conversion to special represention of integers is necessary

## Comparision of some serial-parallel-designs

## The ZDN-Unit

Concept due to H. Sedlak (1988)
Characteristics:

- use of Booth's algorithm to reduce the number of partial products
-special modular reduction based on an easy comparison with (2/3).N
- execution of multiplication and reduction simultaneously
- use of a special three-operand-adder via carry-save-adder and panic adder

Time for one modular multiplication: $\quad \begin{aligned} & \sim(1 / 2.8) \cdot \mathrm{m} \text { clock cycles in practice } \\ & =(1 / 3) \cdot \mathrm{m} \text { clock cycles in theory }\end{aligned}$
The Brickell-design
Characteristics:
-based on a delayed-carry-adder
-modular reduction similar to Omura's approach
Time for one modular multiplication: $\quad m+7$ clock cycles

## Comparision of some serial-parallel-designs

## Radix-2 and radix-4 RSD-units

N. Takagi and S. Yajima (1992)

Characteristics:

- based on RSD-representation of integers
- modular reduction similar to Omura's approach
$\begin{array}{lll}\text { Time for one modular multiplication: } & m \text { clock cycles } & \text { radix } B=2 \\ m / 2 \text { clock cycles } & \text { radix } B=4\end{array}$


## Radix-8 RSD-unit

extrapolation based on Takagi -Yajima-design
Characteristics:

- based on RSD-representation to radix $B=8$
- modular reduction similar to Omura‘s approach

Time for one modular multiplication: $\quad \mathrm{m} / 3$ clock cycles

Comparing area and time for modular multiplication for some serialparallel units:

|  | ZDN-unit | Brickell | RSD-2 | RSD-4 | RSD-8 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| total area | 1 | 1.8 | 2 | 3 | $<5$ |
| time for modular <br> multiplication | 1 | 2.8 | 2.8 | 1.4 | 0.9 |

- Data for the ZDN-unit are normalized to 1
- Area for Brickell, RSD-2 and RSD-4 extrapolated to modern chip technology
- Area estimate for RSD-8 based on a preliminary synthesis with automatic design tool


## Conclusion

$\rightarrow$ We described various design approaches for long integer arithmetic units
$\rightarrow$ The serial-parallel-multiplier seems to be the adequate approach
$\rightarrow$ Under all serial-parallel designs under consideration the ZDN-unit offers the best ratio between area consumption are performance

