

Design of High Speed Long Calculation Units for Public-Key Cryptography

Jean-Pierre Seifert

Infineon Technologies Corporation Security & Chip Card ICs Technical Innovation D-81669 Munich Germany

Motivation - Why to think about new long integer arithmetic units for smart card ICs?

- ➔ First generation long integer units were designed to support RSA
- ➔ Longer RSA parameters desired
- ➔ RSA is loosing its dominant role
- ➔ Increasing interest in public key schemes based on elliptic curves
- New attacks unknown when the current units were designed

- ➔ Support of RSA up to 2048 Bits
- ➔ Support of elliptic curves over finite fields up to 256 Bits
- Immunity against recent attacks
- Flexibility and scalability of the design

What are the arithmetic requirements due to RSA?

RSA Crucial cryptographic operation: $a,b, N \rightarrow a^b \mod N$

Reduction to more elementary operations

modular squarings , modular multiplications $\label{eq:constraint} \begin{array}{c} c \to c^2 \mbox{ mod } N; \\ c,a \to c \times a \mbox{ mod } N \end{array}$

Registers:

small number of very long registers (4 x 2048 Bits)

What are the arithmetic requirements due to elliptic curves?

Elliptic curve E: $y^2 = x^3 + ax + b$ over GF(p) or E: $y^2 = x^3 + ax + b$ over $GF(2^k)$

Crucial cryptographic operation:

k, $P \rightarrow k \times P$, where k is a secret integer, $P = (x_P, y_P)$ is a point on **E**.

Reduction to elementary operations on elliptic curve

point doublings / additions of different points $\label{eq:Q} Q \to 2 \times Q \qquad \qquad Q, P \to Q + P$

Reduction to elementary modular arithmetic

a lot of modular additions, modular subtractions, modular multiplications, and at least one modular inversion

Registers:

large number of rather short registers (8 x 256 Bits) random access to operands necessary

What is "modular arithmetic" and how to do it?

Given:	a positive integer N, the modulus, integers a and b with $0 \le a$, b < N
Modular addition:	Find the integer c with $0 \le c < N$ such that $c \equiv a+b \mod N$
Modular multiplication:	Find the integer c with $0 \le c < N$ such that $c \equiv a \times b \mod N$

Standard techniques for modular multiplication:

- Multiply a and b and divide the result by N.
- Interleave steps necessary for multiplication with steps for modular reduction

The methods for modular arithmetic depend strongly on the chosen representation of integers:

Basis $\mathbf{B} = \{B_{m-1}, \dots, B_0\}$ integer $a \iff b$

vector $(a_{m-1}, ..., a_0)$ of coordinates a_j with respect to B_j

Some design approaches

→ The chinese remainder approach

- → Basis B = { $B_{m-1}, ..., B_0$ } consists of coprime integers
- \rightarrow additions, multiplications mod $B_{m-1}, \dots, mod B_0$ in parallel
- → modular reduction difficult

➔ The full-parallel-multiplier-approach

- → Basis B = { $B_{m-1}, ..., B_0$ } consists of powers of a fixed radix B
- ➔ widely a software approach

The serial-parallel-multiplier approach

→ Basis B = { $B_{m-1}, ..., B_0$ } consists of powers of a fixed radix B

Algorithmic description of interleaved modular multiplication

Basic design options for a modular multiplication device

The full-parallel-multiplier approach:large radix $B = 2^k$ (i.e. k = 16)

core component: k-bit parallel-multiplier

- calculates products a_i ·b in blocks of length k
- reduced number of loop iterations

The serial-parallel-multiplier approach:small radix $B = 2^k$ (i.e. k = 1,..,3)

core component: fast parallel adder

- small number of products a_i ·b
- addition of intermediate results in one step

The serial-parallel-multiplier approach

<u>Method</u>

- multiplication is broken down to shifts and additions
- modular reduction interleaved with steps for multiplication

Basic constituents

- fast parallel adder
- algorithm for modular reduction

The problem of fast parallel addition

Given :	Basis $\mathbf{B} = \{B_{m-1},, B_0\}$ with $B_j = B^j$, for some fixed radix B, set of digits \mathbf{Z} . Integers $\mathbf{a} = (\mathbf{a}_{m-1},, \mathbf{a}_0)$ and $\mathbf{b} = (\mathbf{b}_{m-1},, \mathbf{b}_0)$, $\mathbf{a}_i, \mathbf{b}_i \in \mathbf{Z}$.		
Problem:	Design a device that determines $s = (s_m,, s_0)$, where $s = a + b$ Area: as small as possible Time: as short as possible Scalability: as good as possible		
Non-redunda	nt set Z of digits:		Redundant set Z of digits:
Z = {0,1,,E representatio	3 -1} n of integer is unique		#(Z) > B representation of integer is not unique
 → Carry-rip → Carry-log → Carry-code 	ople-adder ok-ahead-adder ompletition-adder		 → Carry-save-adder → Delayed-carry-adder → RSD-adders
			Security & Chip Card ICs

Comparision of parallel adders (i)

Basis $B = \{B_{m-1}, ..., B_0\}$ with $B_j = B^j$, for radix B=2, set of digits: $Z = \{0, 1\}$

→ Carry-ripple-adder

Area:	O(m)	m full-adder-cells
Time:	O(m)	
Scalability:	good	

→ Carry-look-ahead-adder

Area:	O(m·log m
Time:	O(log m)
Scalability:	difficult

→ Carry-completition-adder

Area:	O(m·log m)	
Time:	O(log m)	
Scalability:	difficult	

The carry-ripple-adder

Given : Basis B = {B_{m-1}, ...,B₀} with B_j = B^j, for the radix B = 2, set of digits Z = {0,1}

Integers
$$a=(a_{m\text{-}1},\,...,\,a_0)$$
 and $b=(b_{m\text{-}1},\,...,\,b_0),\,a_i,\,b_i\in Z.$ $s=(s_m,\,...,\,s_0)$, where $s=a+b$

Addition rule:
$$s_i = a_i \oplus b_i \oplus c_i$$
, where $c_0 = 0$
 $c_{i+1} = a_i \times b_i \vee a_i \times c_i \vee b_i \times c_i$
 $s_m = c_m$

Properties:

Area:	O(m),
Time:	O(m)
Scalability:	good

Evaluation: completely inadequate for cryptographic applications

Comparision of parallel adders (II)

Basis $B = \{B_{m-1}, ..., B_0\}$ with $B_j = B^j$, for radix B=2, set of digits: $Z = \{0, 1\}$

→ Carry-Save-adder

Area:	O(m)	m full-adder-cells
Time:		O(1)
Scalability:	good	

Delayed-carry-adder

Area:O(m)m full-adder-cells + m half-adder-cellsTime:O(1)Scalability:good

RSD-adders

Area:	O(m)	
Time:		O(1)
Scalability:	good	

The carry-save-adder or (3,2)-counter or 3-operand-adder

Given : Basis $\mathbf{B} = \{B_{m-1}, ..., B_0\}$ with $B_i = B^j$, for radix B = 2.

set of digits Z first operand:	Z = {0,1}
second operand	pair of binary digits from Z
sum:	pair of binary digits from Z

Input: $a = (a_{m-1}, ..., a_0),$ $b = (b_{m-1}, ..., b_0), c=(c_{m-1}, ..., c_0)$

Output: $s = (s_{m-1}, ..., s_0)$ and $c' = (c'_{m-1}, ..., c'_0)$ such that

s + c' = a + b + c

Addition rules.

 $s_i = a_i \oplus b_i \oplus c_i$ $c'_{i+1} = a_i \times b_i \vee a_i \times c_i \vee b_i \times c_i$

Properties:

Area: O(m) , scales easily Time: O(1)

The carry-save-adder is a straightforward derivate of the carry-ripple-adder.

Security & Chip Card ICs

The panic-adder or a fast-average-case adder

Idea: On average, the longest carry chain when adding two m-bit numbers is of length

 $\log_2 m$.

Thus:

- Divide m bits into blocks of length b, i.e., m/b blocks.
- Choose b large enough such that there is on average no carry between consecutive blocks.
- Realize the blocks of length b as carry-look-ahead-adders.
- A block gets into panic, if an incoming carry would travel through it.
- **Clue:** No time needed for carry propagation on average, but only some little extra time in the unlikely case that a block gets into panic.

Probability that a block gets into panic

probability for panic in block of length b	= (1/2) ^b
probability for no panic in I blocks of length b	= (1 - (1/2) ^b) ^l
probability for panic in at least 1 out of I blocks	= 1 - (1 - (1/2) ^b) ^l

The panic adder

Given : Basis B = {B_{m-1}, ...,B₀} with B_j = B^j, for the radix B = 2, set of digits $\mathbf{Z} = \{0,1\}$

Integers
$$a = (a_{m-1}, ..., a_0)$$
 and $b = (b_{m-1}, ..., b_0)$, $a_i, b_i \in Z$
s = (s_m, ..., s₀), where s = a + b

Addition rule:

as described before

Properties:

Area:	O(m),
Time:	O(1)
Scalability:	very good

Evaluation: Extraordinarily suited for cryptographic applications as operands are long, thus resulting in a good average time.

Methods for interleaved modular reduction

<u>Problem</u>: Given the modulus N and integers a and b with $0 \le a, b < N$. Find $a + b \mod N$.

Methods to solve the problem:

Comparision of sizes and subtraction

 $\label{eq:classical} \begin{array}{l} c \leftarrow a + b \\ \text{if } c \geq N \text{ then } c \leftarrow c \text{ - } N \\ \text{Problem: The comparision $``` is $c \geq N ? "$ can be difficult} \end{array}$

Omura reduction

For a fixed power $2^{s} > N$ the integer $2^{s} - N$ is stored This replaces comparision of sizes by overflow detection

Montgomery reduction

avoids completely operations based on estimates of sizes Replaces operations with N by operations with the radix B Drawback: conversion to special represention of integers is necessary

Comparision of some serial-parallel-designs

The ZDN-Unit Concept due to H. Sedlak (1988) Characteristics:

- use of Booth's algorithm to reduce the number of partial products
- -special modular reduction based on an easy comparison with (2/3)·N
- execution of multiplication and reduction simultaneously
- use of a special three-operand-adder via carry-save-adder and panic adder

Time for one modular multiplication:

~ (1/2.8)·m clock cycles in practice = (1/3)·m clock cycles in theory

The Brickell-design

Characteristics:

- -based on a delayed-carry-adder
- -modular reduction similar to Omura's approach

<u>Time for one modular multiplication:</u> m + 7 clock cycles

Comparision of some serial-parallel-designs (II)

Radix-2 and radix-4 RSD-units

N. Takagi and S. Yajima (1992)

Characteristics:

- based on RSD-representation of integers
- modular reduction similar to Omura's approach

Time for one modular multiplication:	m clock cycles	radix $B = 2$
	m/2 clock cycles	radix $B = 4$

Radix-8 RSD-unit

extrapolation based on Takagi -Yajima-design

Characteristics:

- based on RSD-representation to radix B = 8
- modular reduction similar to Omura's approach

Time for one modular multiplication: m/3 clock cycles

Comparision of some serial-parallel-designs (III)

Comparing area and time for modular multiplication for some serialparallel units:

	ZDN-unit	Brickell	RSD-2	RSD-4	RSD-8
total area	1	1.8	2	3	<5
time for modular multiplication	1	2.8	2.8	1.4	0.9

- Data for the ZDN-unit are normalized to 1
- Area for Brickell, RSD-2 and RSD-4 extrapolated to modern chip technology
- Area estimate for RSD-8 based on a preliminary synthesis with automatic design tool

Conclusion

- We described various design approaches for long integer arithmetic units
- → The serial-parallel-multiplier seems to be the adequate approach
- Under all serial-parallel designs under consideration the ZDN-unit offers the best ratio between area consumption are performance

