
Jean-Pierre Seifert

Infineon Technologies Corporation

Security & Chip Card ICs

Technical Innovation

D-81669 Munich

Germany

Design of High Speed Long Calculation

Units for Public-Key Cryptography

Security & Chip Card ICs

Security & Chip Card ICs

 First generation long integer units were designed to support RSA

 Longer RSA parameters desired

 RSA is loosing its dominant role

 Increasing interest in public key schemes based on elliptic curves

 New attacks unknown when the current units were designed

 Support of RSA up to 2048 Bits

 Support of elliptic curves over finite fields up to 256 Bits

 Immunity against recent attacks

 Flexibility and scalability of the design

Motivation - Why to think about new long integer arithmetic units
for smart card ICs?

requirements

Security & Chip Card ICs

What are the arithmetic requirements due to RSA?

RSA
Crucial cryptographic operation:
 a,b, N → ab mod N

modular squarings , modular multiplications
c → c2 mod N;
c,a → c×a mod N

Registers:
small number of very long registers (4 x 2048 Bits)

Reduction to more elementary operations

Security & Chip Card ICs

What are the arithmetic requirements due to elliptic curves?

Elliptic curve E: y2 = x3 + ax + b over GF(p) or E: y2 = x3 + ax + b over GF(2k)

Crucial cryptographic operation:
k, P → k×P, where k is a secret integer, P = (xP, yP) is a point on E.

point doublings / additions of different points
 Q → 2×Q Q,P → Q + P

a lot of modular additions, modular subtractions, modular multiplications, and
at least one modular inversion

Registers:
large number of rather short registers (8 x 256 Bits)
random access to operands necessary

Reduction to elementary operations on elliptic curve

Reduction to elementary modular arithmetic

Security & Chip Card ICs

What is “modular arithmetic“ and how to do it?

Given: a positive integer N, the modulus,
integers a and b with 0 ≤ a, b < N

Modular addition: Find the integer c with 0 ≤ c < N such that c ≡ a+b mod N

Modular multiplication: Find the integer c with 0 ≤ c < N such that c ≡ a×b mod N

Standard techniques for modular multiplication:

• Multiply a and b and divide the result by N.
• Interleave steps necessary for multiplication with steps for modular reduction

The methods for modular arithmetic depend strongly on the chosen representation of
integers:

Basis B = {Bm-1,...,B0}
integer a ⇔⇔⇔⇔ vector (am-1, ...,a0) of coordinates aj with respect to Bj

Security & Chip Card ICs

Some design approaches

 The chinese remainder approach
 Basis B = {Bm-1, ...,B0} consists of coprime integers
 additions, multiplications mod Bm-1 ,..., mod B0 in parallel
 modular reduction difficult

 The full-parallel-multiplier-approach
 Basis B = {Bm-1, ...,B0} consists of powers of a fixed radix B
 widely a software approach

 The serial-parallel-multiplier approach
 Basis B = {Bm-1, ...,B0} consists of powers of a fixed radix B

Security & Chip Card ICs

Algorithmic description of interleaved modular multiplication

Given : Basis B = {Bm-1, ...,B0} with Bj = Bj , for some radix B = 2k and
 a = (am-1, ..., a0), b = (bm-1, ..., b0), c = (cm-1, ..., c0)

Input: Operands a, b of length m, radix B, modulus N
Output: c = a·b mod N

1) c ← 0;
2) for i ← m - 1 downto 0 do
3) c ← c·B + ai ·b
4) c ← c mod N

The full-parallel-multiplier approach:
large radix B = 2k (i.e. k = 16)

core component: k-bit parallel-multiplier

• calculates products ai ·b in blocks of length k
• reduced number of loop iterations

The serial-parallel-multiplier approach:
small radix B = 2k (i.e. k = 1,..,3)

core component: fast parallel adder

• small number of products ai ·b
• addition of intermediate results in one step

Basic design options for a modular multiplication device

interleaved reduction

Security & Chip Card ICs

Method

multiplication is broken down to shifts and additions

 modular reduction interleaved with steps for multiplication

Basic constituents

 fast parallel adder

 algorithm for modular reduction

The serial-parallel-multiplier approach

Security & Chip Card ICs

The problem of fast parallel addition

Given : Basis B = {Bm-1, ...,B0} with Bj = Bj , for some fixed radix B, set of digits Z.

 Integers a = (am-1, ..., a0) and b = (bm-1, ..., b0) , ai, bi ∈ Z.

Problem: Design a device that determines s = (sm, ..., s0) , where s = a + b
Area: as small as possible
Time: as short as possible
Scalability: as good as possible

Non-redundant set Z of digits:

 Z = {0,1,....,B -1}
representation of integer is unique

 Carry-ripple-adder
 Carry-look-ahead-adder
 Carry-completition-adder

Redundant set Z of digits:

#(Z) > B
representation of integer is not unique

 Carry-save-adder
 Delayed-carry-adder
 RSD-adders

Security & Chip Card ICs

Comparision of parallel adders (i)

Basis B = {Bm-1, ...,B0} with Bj = Bj , for radix B=2, set of digits: Z = {0,1}

 Carry-ripple-adder
Area: O(m) m full-adder-cells
Time: O(m)
Scalability: good

 Carry-look-ahead-adder
Area: O(m⋅log m)
Time: O(log m)
Scalability: difficult

 Carry-completition-adder
Area: O(m⋅log m)
Time: O(log m)
Scalability: difficult

Security & Chip Card ICs

The carry-ripple-adder

Given : Basis B = {Bm-1, ...,B0} with Bj = Bj , for the radix B = 2, set of
digits Z = {0,1}

 Integers a = (am-1, ..., a0) and b = (bm-1, ..., b0), ai, bi ∈ Z.
s = (sm, ..., s0) , where s = a + b

 Addition rule: si = ai ⊕ bi ⊕ ci, where c0 = 0
 ci+1 = ai×bi v ai×ci v bi×ci

 sm = cm

Properties:
Area: O(m),
Time: O(m)
Scalability: good

Evaluation: completely inadequate for cryptographic applications

Security & Chip Card ICs

Comparision of parallel adders (II)

Basis B = {Bm-1, ...,B0} with Bj = Bj , for radix B=2, set of digits: Z = {0,1}

 Carry-Save-adder
 Area: O(m) m full-adder-cells
 Time: O(1)
 Scalability: good

 Delayed-carry-adder
 Area: O(m) m full-adder-cells + m half-adder-cells
 Time: O(1)
 Scalability: good

 RSD-adders
 Area: O(m)
 Time: O(1)
 Scalability: good

Security & Chip Card ICs

The carry-save-adder or (3,2)-counter or 3-operand-adder

Given : Basis B = {Bm-1, ...,B0} with Bj = Bj , for radix B = 2.

set of digits Z first operand: Z = {0,1}
second operand pair of binary digits from Z
sum: pair of binary digits from Z

 Input: a = (am-1, ..., a0),
b = (bm-1, ..., b0), c=(cm-1, ..., c0)

 Output: s = (sm-1, ..., s0) and c‘ =(c‘m-1, ..., c‘0) such that

 s + c‘ = a + b + c

Addition rules. si = ai ⊕ bi ⊕ ci

 c‘i+1 = ai× bi v ai× ci v bi × ci

Properties: Area: O(m) , scales easily
Time: O(1)

The carry-save-adder is a straightforward derivate of the carry-ripple-adder.

Security & Chip Card ICs

The panic-adder or a fast-average-case adder

Idea: On average, the longest carry chain when adding two m-bit
 numbers is of length

log2 m.

Thus:

 — Divide m bits into blocks of length b, i.e., m/b blocks.

— Choose b large enough such that there is on average no carry

 between consecutive blocks.

— Realize the blocks of length b as carry-look-ahead-adders.

— A block gets into panic, if an incoming carry would travel through it.

Clue: No time needed for carry propagation on average, but only some

 little extra time in the unlikely case that a block gets into panic.

Security & Chip Card ICs

Probability that a block gets into panic

probability for panic in block of length b = (1/2)b

probability for no panic in l blocks of length b = (1 - (1/2)b)l

probability for panic in at least 1 out of l blocks = 1 - (1 - (1/2)b)l

Security & Chip Card ICs

The panic adder

Given : Basis B = {Bm-1, ...,B0} with Bj = Bj , for the radix B = 2, set of
digits Z = {0,1}

 Integers a = (am-1, ..., a0) and b = (bm-1, ..., b0), ai, bi ∈ Z
s = (sm, ..., s0), where s = a + b

Addition rule:
as described before

Properties:
Area: O(m),
Time: O(1)
Scalability: very good

Evaluation: Extraordinarily suited for cryptographic applications as
operands are long, thus resulting in a good average time.

Security & Chip Card ICs

Methods for interleaved modular reduction

Problem: Given the modulus N and integers a and b with 0 ≤ a, b < N.
Find a + b mod N.

Methods to solve the problem:

 Comparision of sizes and subtraction
c ← a + b

 if c ≥ N then c ← c - N
Problem: The comparision “ is c ≥ N ? “ can be difficult

 Omura reduction
For a fixed power 2s > N the integer 2s - N is stored
This replaces comparision of sizes by overflow detection

 Montgomery reduction
avoids completely operations based on estimates of sizes
Replaces operations with N by operations with the radix B
Drawback: conversion to special represention of integers is

necessary

Security & Chip Card ICs

Comparision of some serial-parallel-designs

The ZDN-Unit
Concept due to H. Sedlak (1988)

Characteristics:

- use of Booth´s algorithm to reduce the number of partial products

-special modular reduction based on an easy comparison with (2/3)·N

- execution of multiplication and reduction simultaneously

- use of a special three-operand-adder via carry-save-adder and panic adder

Time for one modular multiplication: ~ (1/2.8)·m clock cycles in practice
= (1/3)·m clock cycles in theory

The Brickell-design
Characteristics:

-based on a delayed-carry-adder
-modular reduction similar to Omura‘s approach

Time for one modular multiplication: m + 7 clock cycles

Security & Chip Card ICs

Comparision of some serial-parallel-designs (II)

Radix-2 and radix-4 RSD-units
N. Takagi and S. Yajima (1992)

Characteristics:
- based on RSD-representation of integers
- modular reduction similar to Omura‘s approach

Time for one modular multiplication: m clock cycles radix B = 2
m/2 clock cycles radix B = 4

Radix-8 RSD-unit
extrapolation based on Takagi -Yajima-design

Characteristics:
- based on RSD-representation to radix B = 8
- modular reduction similar to Omura‘s approach

Time for one modular multiplication: m/3 clock cycles

Security & Chip Card ICs

Comparing area and time for modular multiplication for some serial-
parallel units:

Comparision of some serial-parallel-designs (III)

ZDN-unit Brickell RSD-2 RSD-4 RSD-8
total area 1 1.8 2 3 < 5
time for modular
multiplication

1 2.8 2.8 1.4 0.9

• Data for the ZDN-unit are normalized to 1

• Area for Brickell, RSD-2 and RSD-4 extrapolated to modern chip

 technology

• Area estimate for RSD-8 based on a preliminary synthesis with

 automatic design tool

Security & Chip Card ICs

Conclusion

 We described various design approaches for long integer arithmetic

units

 The serial-parallel-multiplier seems to be the adequate approach

 Under all serial-parallel designs under consideration the ZDN-unit

offers the best ratio between area consumption are performance

